If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-33x-162=0
a = 3; b = -33; c = -162;
Δ = b2-4ac
Δ = -332-4·3·(-162)
Δ = 3033
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3033}=\sqrt{9*337}=\sqrt{9}*\sqrt{337}=3\sqrt{337}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-3\sqrt{337}}{2*3}=\frac{33-3\sqrt{337}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+3\sqrt{337}}{2*3}=\frac{33+3\sqrt{337}}{6} $
| 17x-1+6x-3=180 | | |d+10|=9 | | -9z+9+20z=10z-8 | | 3y+21=51 | | 2(4x+1)=180 | | 5y=3y+38 | | (14x+6)=128 | | 89000=t•11.23 | | 7-m=5-3m | | 4(8s-32)-10s=10 | | 2(3a+5)=4(a+4 | | 3(4g+6=2(6g+9 | | -9u=4-10u | | 17x-8=10x-22 | | 3(6+5=4(2b-5) | | 14-6j=-9j-7 | | 4+6u=7u-8 | | 75x+20=375 | | 14x+6=128 | | 9x2=7x+6 | | X-35+x-x-46+1/2x=360 | | 75x+20=355 | | 20+r+20=-20-5r | | 2m(m+10)+m=180 | | x-6.7=28.8 | | 22x+4=36x+2 | | 8x+2=-46 | | 2(7u-3)-(6+9)-3(26+1)=24 | | -5x(2x-6)=-10 | | 3t-2=2+t | | b-6=2{b/2-3} | | 2m(m+10)m=180 |